
Calculation of energy subband structures of corrugated lateral-surface superlattices based on

variational principles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 7605

(http://iopscience.iop.org/0953-8984/8/41/009)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 04:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/41
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 7605–7617. Printed in the UK

Calculation of energy subband structures of corrugated
lateral-surface superlattices based on variational principles

Hong Sun†, Jin-Min Huang‡ and Kin-Wah Yu§
† Department of Physics and Institute of Condensed Matter Physics, Shanghai Jiao Tong
University, Shanghai 200030, People’s Republic of China
‡ Shanghai Vocational College of Mechanical and Electrical Engineering, Branch II, Shanghai
200082, People’s Republic of China
§ Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong
Kong

Received 27 March 1996, in final form 5 July 1996

Abstract. A theoretical method is developed for calculating energy subbands of carriers in
lateral-surface superlattices with corrugated interfaces (CLSSLs). Based on the variational
principle and a coordinate transformation, the method overcomes difficulties in constructing
wave functions which must satisfy complicated boundary conditions on corrugated interfaces.
The method is tested numerically via calculations of electron subbands, probability distributions
and intersubband optical absorptions of CLSSLs with periodic variations of well thicknesses.
Sensitive dependencies of electron subbands, probability distributions and intersubband optical
absorptions on structural parameters of CLSSLs are predicted.

1. Introduction

Much attention is currently being devoted to two-dimensional electronic systems with
further periodic confinements of carriers (electrons and holes) along lateral directions [1–
20]. In the literature, these systems are often referred to as lateral-surface superlattices
(LSSLs). A variety of interesting electronic and optical phenomena associated with energy
subband structures of LSSLs have been discovered experimentally. Of the various structures
of LSSLs proposed, the one produced by direct crystal growth methods without using
lithographic techniques offers great potential for wide applications in microelectronics and
optoelectronics, for lithographic techniques usually introduce defects and produce samples
with lateral dimensions (>100 nm) much larger than their vertical dimensions (≈10 nm)
[2, 12, 14, 17]. Some of the direct growth methods include deposition of AlAs and
GaAs fractional layers on (001) vicinal surfaces of GaAs substrates [4, 11] and direct
molecular-beam epitaxy growth of GaAs and AlAs layers on high-index GaAs surfaces
[20]. Lateral confinements of carriers in these systems are achieved due to periodically
corrugated interfaces separating well and barrier materials, creating corrugated lateral-
surface superlattices (CLSSLs) with lateral periods ranging from 3 to 30 nm. Strong
periodic lateral confinements (or equivalently, lateral periodic potentials) imposed on carriers
introduce new energy subband structures with subband gaps large enough to induce novel
physical properties in CLSSLs.

Calculations of energy subbands of CLSSLs have been carried out by several groups [21–
24]. Due to complicated boundary conditions on corrugated interfaces, these calculations
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rely on numerical methods, such as the tight-binding [21, 22] or finite-element methods [23],
which require very heavy computer work. For more complicated problems, such as exciton
states in CLSSLs, calculations involve either even heavier numerical work or oversimplified
assumptions [25]. In this paper, we propose a numerical method for calculating energy
subbands of CLSSLs based on the variational principle, which requires much less computer
work compared with the tight-binding or finite-element methods. The basic idea of the
method is to introduce a coordinate transformation which transforms CLSSLs to ordinary
quantum wells with planar interfaces and effective lateral periodic potentials arising from
corrugated interfaces. The coordinate transformation was introduced in our previous paper
where we calculated electron subbands for CLSSLs with infinitely high potential barriers
on interfaces or with finite barriers but neglecting the difference of electron effective mass
between well and barrier materials of CLSSLs [26, 27]. Our present calculations show that
both of these approximations are not very good for the GaAl/AlAs CLSSLs in which we
are interested. In the present paper, the method is extended to include the effect of mass
difference between well and barrier materials and to calculations of valence subbands of
GaAl/AlAs CLSSLs. As we shall explain later, the inclusion of the mass difference in the
theory is not trivial. The method can also be easily extended to other low-dimensional
electronic systems with non-regular interfaces, such as quantum-well wires with interface
profiles deviated from rectangular or cylindrical structures and quantum dots with interface
profiles deviated from cubic or sphere structures.

The paper is organized as follows. The general theory is presented in the next section.
The accuracy of the method is tested numerically via calculations of electron subbands for
GaAs/AlAs CLSSL structures. The results and discussions are given in the final section.

2. Theory

The CLSSL that we considered consists of the GaAs well and AlAs barriers separated by
interfaces atz± = ±Lz/2+f±(x), whereLz is the average thickness of the well andf±(x)

describe the profile of the corrugated interfaces. In the effective-mass approximation, the
Hamiltonian for the carrier (the electron or hole) in the CLSSL can be written generally as

H =
( T11 · · · T1n

...
...

Tn1 · · · Tnn

)
+ IV (r) (1)

with

Tij =
∑
αβ

∂

∂xα

γ
(ij)

αβ

∂

∂xβ

(α, β = x, y, z; i, j = 1, . . . , n) (2)

whereI is a unit matrix andV (r) is the band offset for conduction or valence bands between
bulk GaAs and AlAs materials. The hermiticity of the Hamiltonian requiresT

†
ji = Tij , and

so γ
(ji) ∗
βα = γ

(ij)

αβ . By comparingH with Hamiltonians of electrons and holes obtained in

the literature, we obtain the parametersγ
(ij)

αβ , a large part of which are zeros. If a single-

band model is used for electrons, we haveγ
(ij)

αβ (r) = −γ δαβδi,1δj,1, whereγ is inversely
proportional to the electron effective mass in the CLSSL. If the Hamiltonian for holes is
obtained from the Luttinger Hamiltonian [28] by replacingγikαkβ with the symmetrized
operator

−1

2

(
∂

∂xα

γi

∂

∂xβ

+ ∂

∂xβ

γi

∂

∂xα

)
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where γi (i = 1, 2, 3) are the Luttinger parameters of the well and barrier materials of
the CLSSL, we haveγ (ij)

αβ = γ
(ij)

βα . If the Hamiltonian of holes is derived from the exact

envelope-function equations developed by Burt [29], generally we haveγ
(ij)

αβ 6= γ
(ij)

βα [30].
The eigen-wave function of the carrier is written as a vector

9(r) =
( ψ1(r)

...

ψn(r)

)
(3)

which satisfies the following eigenvalue equation:

H9(r) = E9(r). (4)

The boundary condition of9 is determined by the continuity of the wave function, and the
continuity of the probability current density at each interface, the latter of which is obtained
by integrating equation (4) over a small cylinder across the interface. We have that the
following quantities must be continuous at each interface:

ψi

∣∣
continuous and

n∑
j=1

∑
αβ

γ
(ij)

αβ

∂ψj

∂xβ

nα

∣∣∣∣∣
continuous

(i = 1, . . . , n) (5)

with n = (nx, ny, nz) the unit vector normal to the interface at each point. Making use
of the boundary condition equation (5), it is easy to show that the Hamiltonian defined in
equations (1) and (2) is hermitian. Equations (4) and (5) form the complete set of equations
which determine subband energies and wave functions of the carrier in the CLSSL.

For a quantum well with planar interfaces parallel to thexy-plane, the boundary
condition at each interface reduces to

ψ|continuous and
1

me

∂ψ
∂z

∣∣∣∣
continuous

(6)

for the electron if a single-band model is used, and to that given in reference [30] for the
hole if the Hamiltonian is derived from the exact envelope-function equations.

The above eigenvalue problem can also be formulated based on the following variational
principle: if the wave function9 (equation (3)) makes the first-order difference of the
following functional:

L[9] =
n∑

ij=1

Lij [ψ∗
i , ψj ] − E

n∑
i=1

∫
dr ψ∗

i ψi (7)

equal to zero, where

Lij [ψ∗
i , ψj ] = −

∑
αβ

∫
dr

∂ψ∗
i

∂xα

γ
(ij)

αβ

∂ψj

∂xβ

+ δij

∫
dr V (r)ψ∗

i ψj (8)

then ψi (i = 1, . . . , n) must satisfy the eigenvalue equation (4) and (natural) boundary
condition equation (5). The only exceptional case is when the barrier potential goes infinitely
high. The boundary condition of9 reduces to

ψi = 0 (i = 1, . . . , n) (5′)

at each interface. The wave function9 must be so constructed that it makesδL[9] = 0
and meanwhile satisfies the (essential) boundary condition equation (5′).
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To find an appropriate complete set of functions for expanding the wave functionsψi

(i = 1, . . . , n), which must satisfy the boundary condition equation (5′) when the barrier
potential goes infinitely high, we introduce the following coordinate transformation [26, 27]:

x̃ = x

ỹ = y

z̃ = Lz{z − [f+(x) + f−(x)]/2}/[Lz + f+(x) − f−(x)]

(9)

which transforms the CLSSL in spacer to a quantum well with planar interfaces at
z̃± = ±Lz/2 in spacer̃, as shown in figure 1. In the transformed spacer̃, the functional
L[9] can be written as

L̃[9̃] = L0[9̃] + δL[9̃] (10)

whereL0[9̃] is the corresponding functional for a quantum well with planar interfaces, and
δL[9̃] can be explained as an effective periodic lateral potential arising from the corrugated
interfaces. In spacẽr, the wave function9̃(r̃) is expanded using the eigen-wave functions
of the corresponding quantum well, which form a complete set:

ψ̃(i)

nk(r̃) =
∑
lm

A
(i)
lm(n, k)ζ

(i)
l (z̃)

ei[(kx−Qm)x̃+ky ỹ]

√
S0

=
∑
lm

A
(i)
lm(n, k)ϕ

(i)
lm(r̃, k) (i = 1, . . . , n) (11)

whereS0 is the surface area of the CLSSL,k is the in-plane wave vector of the carrier
limited within the first Brillouin zone (FBZ),Qm = 2πm/Lx (m = 0, ±1, ±2, . . .) is
the reciprocal-lattice wave vector associated with the lateral periodLx of the CLSSL and
ζ

(i)
l (z̃) is the ith component of thelth eigen-wave function of the quantum well in thez̃-

direction. If the barrier potential height is infinite,ζ
(i)
l (z̃) approaches zero on the interfaces.

And so 9 satisfies the (essential) boundary condition equation (5′). The summation
∑

l

in equation (11) should in principle include all the wave functions ofζ
(i)
l (z̃), which for

finite barriers consist of localized states (l discrete) and extended states (l continuous). The
numerical results in the next section show that for the GaAs/AlAs CLSSL in which we are
interested, it is sufficient to consider only the localized states in the expansion ofψ̃(i)

nk(r̃) in
equation (11) for low-energy subbands. Substitutingψ̃(i)

nk(r̃) into L̃[9̃], and differentiating
it with respect to the expansion coefficientsA

(i)
lm(n, k), we obtain the following equation

which determines the energy subbands of carriers in the CLSSL:

det‖Lilm,j l′m′(k) − En(k)Jilm,j l′m′(k)‖ = 0 (12)

whereLilm,j l′m′(k) = L̃ij [ϕ(i)∗
lm (r̃, k), ϕ

(j)

l′m′(r̃, k)] is defined by equation (8) with the integ-
ration coordinates(x, y, z) transformed to(x̃, ỹ, z̃) by equation (9), and

Jilm,j l′m′(k) = δij

∫
dr̃ J (r̃)ϕ

(i)∗
lm (r̃, k)ϕ

(j)

l′m′(r̃, k) (13)

with J (r̃) = [f+(x̃) − f−(x̃)]/Lz the Jacobian determinant associated with the coordinate
transformation.

The variational principle simplifies the numerical calculation by dealing with only
first derivatives of the wave functions and satisfying the (natural) boundary condition
equation (5) automatically at each interface. For cases where the (essential) boundary
condition equation (5′) is required, the coordinate transformation makes it easy to find the
appropriate variational wave function by transforming the CLSSL to a quantum well with
planar interfaces. If one starts the numerical calculation from the Hamiltonian, as we did
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in our previous papers [26, 27], the trial wave function9 must be constructed to satisfy
the boundary condition equation (5) in order to make the Hamiltonian hermitian. It is
easy to show by direct differentiation that even for electron states, the boundary condition
equation (5) in spacẽr after the coordinate transformation does not take the same simple
form as that for a quantum well with planar interfaces, unless the electron mass difference
between the well and barrier materials is neglected or the barrier potential is infinitely high.
For general cases, where the mass difference is considered, it is still difficult to construct
trial wave functions which satisfy the (transformed) boundary condition in spacẽr. It
becomes even more difficult to construct trial wave functions for hole states which satisfy the
complicated boundary condition on corrugated interfaces of the CLSSL. The difficulty due
to the boundary condition is avoided in the present theory based on the variational principle.
In the next section, the method outlined above is applied to calculations of electron subbands
for GaAs/AlAs CLSSLs, where we will show that the coordinate transformation reduces
considerably the calculated number of matrix elements in equation (12) for the CLSSL in
which we are interested.

3. Electron states in CLSSLs

For electrons in conduction bands of GaAs/AlAs CLSSLs, the parametersγ
(ij)

αβ which
determine the functionalL[9] defined in equations (7), (8) are given by

γ
(ij)

αβ (r) = − h̄2

2me(r)
δαβδi,1δj,1 (14)

if a single-band model is used, whereme(r) describes the electron effective mass in the
GaAs well (mGaAs = 0.0665m0) and AlAs barriers(mAlAs = 0.124m0). The conduction
band offsetVc(r) is Vc = 0 in the well andVc = 1.06 eV in the barriers. In most of the
CLSSL examples reported in the literature, one of interfaces of the CLSSL is step shaped
with a step height equal to 2.83 Å [4, 5]. Because electrons are confined mainly in the
centre of the well, the effect of these monolayer steps on electrons can be neglected by
taking one of the interfaces as a plane. We assume that the interface profile of the CLSSL,
z± = ±Lz/2 + f±(x), is given within one period(−Lx/2 < x < Lx/2) by

f−(x) = 0

f+(x) =
{

δLz{1 − (2|x|/Lw)α1} 0 6 |x| 6 Lw/2

−δLz{1 − [(Lx − 2|x|)/(Lx − Lw)]α2} Lw/2 < |x| 6 Lx/2

(15)

with δLz andLx the amplitude and lateral period of the interface corrugation.Lw gives the
length of the CLSSL where the well thickness is larger than the average thicknessLz, that
is f+(x) > 0. α1, α2 > 1 and are related to each other byα1/α2 = Lw/(Lx − Lw), which
ensures thatf+(x) and its derivative are continuous at each point. Ifα1, α2 → ∞, we have
an ideal square-well-shaped corrugated interface. In figure 1(a), we give the interface profile
of a GaAs/AlAs CLSSL withLz = 7 nm, δLz = 2 nm, Lx = 15 nm, Lw = Lx/2 and
α = α1 = α2 = 30. The interface profile of the CLSSL after the coordinate transformation
in spacer̃ is shown in figure 1(b).

We first setky = 0 in the calculation. The numerical calculation of equation (12) is
carried out by limiting the infinite expansion ofψ̃nk(r̃) in equation (11) tol = 1, 2, . . . , L0

andm = 0, ±1, ±2, . . . ,±M0. The matrix elements in equation (12) are written as

Llm,l′m′(kx) = (kx − Qm)(kx − Qm′)L
(1)
lm,l′m′

+ (kx − Qm)L
(2)
lm,l′m′ + (kx − Qm′)L

(3)
lm,l′m′ + L

(4)
lm,l′m′ (16)
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Figure 1. (a) The profile of the GaAs/AlAs CLSSL considered in the text in spacer
with structural parametersLz = 7 nm, δLz = 2 nm, Lx = 15 nm, Lw = 7.5 nm and
α = α1 = α2 = 30. (b) The profile of the CLSSL in the transformed spacer̃ after the
coordinate transformation.

Table 1. Numerical results for electron subband energiesEn(kx) in the GaAs/AsAl CLSSL
with the structural parametersLz = 7 nm, δLz = 2 nm, Lx = 15 nm Lw = 7.5 nm and
α = α1 = α2 = 50. The calculation is carried out at the centre(kx = 0) and edge(kx = Q/2)

of the FBZ.L0 × (2M0 + 1) expansion wave functions are used in the calculation. The unit of
the energy is meV.

kx/Q = 0.0 E0(kx) E1(kx) E2(kx) E3(kx) E4(kx)

L0 = 1, M0 = 10 137.6 230.3 379.1 518.5 771.5
L0 = 2, M0 = 10 129.7 216.9 303.3 323.2 489.7
L0 = 3, M0 = 10 126.6 213.2 301.7 311.7 483.8
L0 = 4, M0 = 10 125.7 213.0 298.1 310.4 478.8

L0 = 4, M0 = 7 128.1 215.0 299.7 321.1 481.6
L0 = 4, M0 = 8 127.2 214.2 299.1 317.6 480.4
L0 = 4, M0 = 9 126.4 213.7 298.4 314.0 480.0
L0 = 4, M0 = 10 125.7 213.0 298.1 310.4 478.8

kx/Q = 0.5 E0(kx) E1(kx) E2(kx) E3(kx) E4(kx)

L0 = 1, M0 = 10 138.7 225.8 399.2 486.5 840.2
L0 = 2, M0 = 10 132.3 205.9 294.6 376.7 433.8
L0 = 3, M0 = 10 129.6 200.4 291.2 370.7 423.7
L0 = 4, M0 = 10 128.6 200.3 287.9 368.6 423.1

L0 = 4, M0 = 7 130.6 204.5 290.3 373.6 432.6
L0 = 4, M0 = 8 129.9 202.9 289.5 371.8 429.1
L0 = 4, M0 = 9 129.3 201.6 288.7 370.2 425.9
L0 = 4, M0 = 10 128.6 200.3 287.9 368.6 423.1

where L
(p)

lm,l′m′ (p = 1, . . . , 4) is independent ofkx . We also notice from equation (13)
that Jlm,l′m′(kx) = Jlm,l′m′ is independent ofkx . The subscripts(i, j) in Lilm,j l′m′(kx) and
Jilm,j l′m′ are dropped since for the electroni = j = 1. Once the matricesJlm,l′m′ andL

(p)

lm,l′m′

are determined, the subband energiesEn(kx) at anykx can be calculated from equation (12)
by standard programs. Due to the simple interface profile of the CLSSL in the transformed
spacer̃ (see figure 1(b)), integrations overx̃ and z̃ in Jlm,l′m′ andL

(p)

lm,l′m′ are separable. We
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have

Jlm,l′m′ = J x
m,m′ J

z
l,l′ L

(p)

lm,l′m′ = L
x,(p)

m,m′ L
z,(p)

l,l′ (p = 1, . . . , 4). (17)

Instead of 5× [(L0N0)
2 + L0N0]/2 (with N0 = 2M0 + 1) two-dimensional integrations,

only 5× (L2
0 +L0 +N2

0 +N0)/2 one-dimensional integrations need to be calculated, where
the hermiticity of the matrices has been taken into consideration. IfL0 = 4 andM0 = 10,
instead of 17 850two-dimensional integrations, only 1205one-dimensional integrations need
to be calculated, which saves greatly on computer time. All of the numerical calculations
given in this paper were performed on an IBM PC/486. The numerical calculation for a
typical figure or table takes about 10 minutes.

Figure 2. Electron subband energiesEn(kx) (the solid lines) as functions of the reduced wave
vector kx/Q for the same GaAs/AlAs CLSSL as that in figure 1. Also given are subband
energiesEn(kx) calculated for the same CLSSL with the difference of the electron effective
mass neglected by takingmAlAs = mGaAs = 0.0665m0 (the dashed lines in (a)), with the height
of the barrier potential assumed to be infinite (the dashed lines in (b)) and withky = Q (the
dashed lines in (c)). We setky = 0 in all calculations except for that of the dashed lines in (c).
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In table 1, we give the calculated results for the first few subband energies at the centre
(kx = 0) and edge(kx = Q/2 with Q = 2π/Lx) of the FBZ for differentL0 and M0.
The structural parameters of the GaAs/AlAs CLSSL are the same as those in figure 1. The
numerical error is expected to be 1% ifL0 = 4 andM0 = 10.

In figure 2, we give the calculated subband energiesEn(kx) (the solid lines) as functions
of the reduced wave vectorkx/Q for the same GaAs/AlAs CLSSL as that in figure 1. Also
given in figure 2 are the subband energiesEn(kx) for the same CLSSL but with the difference
of the electron effective mass neglected by takingmAlAs = mGaAs = 0.0665m0 (the dashed
lines in (a)) and with the height of the barrier potential assumed to be infinite (the dashed
lines in (b)). The results show that both of these approximations, especially the latter, are
not very good for the GaAs/AlAs CLSSLs that we considered. For cases whereky 6= 0,
due to the translational symmetry along they-direction of the CLSSL, the subband energy
of the electron can be written as

En(kx, ky) = h̄2k2
y

2mGaAs

+ En(kx) (18)

if the difference between the effective masses of the well and barriers is neglected. When the
mass difference is not negligible, we can writeEn(kx, ky) formally as that in equation (18).
But now En(kx) is determined by aky-dependent band offset:

Veff (r, ky) = V (r) + h̄2k2
y

2mGaAs

[
mGaAs

me(r)
− 1

]
. (19)

In calculations carried out in this paper,ky is limited to |ky | < Q. In figure 2(c), we show
the calculated results forEn(kx) with ky = 0 (the solid lines) andky = Q (the dashed lines)
for the same CLSSL. It is obvious that when|ky | < Q, the dependence ofEn(kx) on ky

can be neglected.
The exact interface profile of the CLSSL depends on the growth condition. It has been

found experimentally that during growth, Ga and Al migrate laterally between the regions
of AlAs bars [4] (see figure 1(a)). The actual interface profile deviates from that of an
ideal square well. To investigate the effect of structures of CLSSLs on energy subbands,
in figure 3 we give the calculated results of the electron subband direct transition energy
1En(kx) = En(kx)−E0(kx) at kx = 0 (the dashed lines) andkx = Q/2 (the solid lines), and
subband widthWEn = max{En(kx)}− min{En(kx)} (the chain lines) as functions of (a) the
structural parameterα = α1 = α2, (b) the lateral periodLx and (c) the average thickness
Lz for GaAs/AlAs CLSSLs with other structural parameters being the same as those in
figure 1. The transition energy1En(kx) and subband widthWEn approach constants as
α → ∞, corresponding to those for the ideal square-well corrugation. Whenα is below
50, 1En(kx) andWEn depend sensitively on the exact interface profile of the CLSSL. The
direct transition energy1En(kx) and subband widthWEn determine mainly peak positions
and widths of far-infrared (FIR) optical absorptions of CLSSLs associated with electron
transitions between different electron subbands. By changing structural parameters (α, Lz,
Lx etc), one is able to adjust FIR absorption spectra of CLSSLs.

The probability distribution of the electron in the CLSSL is given in figure 4, where the
normalized electron wave function|ψnkx

(x, z)|2 is plotted in the original spacer as functions
of x andz for (a) n = 0, (b)n = 1 and (c)n = 2 with kx = Q/2. The structural parameters
of the CLSSL are the same as those in figure 1. The electron probability distribution
satisfies the periodic condition|ψnk(x + Lx, z)|2 = |ψnk(x, z)|2. Electrons in the ground
stateψ0k(r) concentrate mainly in parts of the GaAs well where the well is thick (see also
figure 1). While the electron distribution in the excited states is rather complicated. In the
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Figure 3. The electron intersubband direct transition energy1En(kx) at kx = 0 (the dashed
lines) andkx = Q/2 (the solid lines), and subband widthWEn (the chain lines) as functions
of (a) the structural parameterα = α1 = α2, (b) the lateral periodLx and (c) the average
thicknessLz of the GaAs/AlAs CLSSLs with other structural parameters being the same as
those in figure 1.

first excited stateψ1k(r), no node is found in the electron probability distribution along
the z-direction, which leads to a small transition matrix〈ψ0k(r)|pz|ψ1k(r)〉 connecting the
ground and first excited states. In the second excited stateψ2k(r), no node is found along
thex-direction, which leads to a small transition matrix〈ψ0k(r)|px |ψ2k(r)〉 connecting the
ground and second excited states. For incident light polarized in directionα (α = x, y, z),
FIR optical absorptions associated with electron transitions between electron subbands are
proportional to the square of the transition matrix|〈ψ0k(r)|pα|ψnk(r)〉|2. Strong anisotropic
FIR optical absorptions are expected for the CLSSLs that we considered.

In figure 5, we give the calculated imaginary parts of the dielectric functionε2, associated
with electron intersubband transitions, as functions of the energy of incident light ¯hω

for the same CLSSL as that in figure 1. The polarization of incident light is in thex-
direction (the chain lines) and in thez-direction (the solid lines). The electron density
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Figure 4. The distributions of
the electron probability|ψnkx

(x, z)|2
plotted in the original spacer as
functions of x and z for (a) n = 0,
(b) n = 1 and (c)n = 2 with kx =
Q/2. The structural parameters of
the CLSSL are the same as those in
figure 1. V is the average volume of
the CLSSL.
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Figure 5. The calculated imaginary parts of the dielectric functionε2 as functions of the energy
of incident lighth̄ω for the same CLSSL as that in figure 1. The polarization of incident light
is in the x-direction (the chain lines) andz-direction (the solid lines). The electron density is
(a) ne = 5.0 × 1011 cm−2 at which the Fermi energy level is pushed into the first minigap of
the electron subbands, and (b)ne = 2.5 × 1011 cm−2 at which the Fermi energy level remains
in the first subband.

is (a) ne = 5.0 × 1011 cm−2 at which the Fermi energy level is pushed into the first
minigap of the electron subbands, and (b)ne = 2.5× 1011 cm−2 at which the Fermi energy
level remains in the first subband. The results in figure 5(a) show that for incident light
polarized in thex-direction, the strong FIR absorption is due to electron transitions between
the ground and first excited states, and for incident light polarized in thez-direction, it is
determined by electron transitions between the ground and second excited states, consistent
with the electron probability distributions obtained in figure 4. To be more specific, the
electron transitions mainly responsible for strong FIR absorptions are those near the edge
of the FBZ with kx ≈ Q/2 (see also figure 2). Results in figure 5(b) show that when the
electron density is low and the states near the edge of the FBZ are not occupied, strong
FIR absorption peaks disappear. This carrier-density-dependent absorption behaviour makes
the CLSSLs that we considered here suitable for designing the so-called carrier-activated
modulators, which was first suggested using conventional quantum wells [31, 32]. Due
to the transitional symmetry in directions parallel to planar interfaces of quantum wells,
intersubband absorptions are non-zero only when incident light is polarized perpendicular to
quantum wells. In particular, intersubband absorptions vanish in quantum wells for normal
incident light. But for the CLSSLs that we considered here, intersubband absorptions exist
even for normal incident light.

In figure 6, we give the calculated electron densityne (the solid line) as a function of
the Fermi energyEF for the same CLSSL as that in figure 1. Also shown in figure 6 is
the calculated Fermi wave vectorkF (the chain line) defined byEF = E0(kF ). The dashed
line in figure 6 indicates the Fermi energy level at which the first subband is filled up with
electrons.

Electron redistributions (see figure 4) caused by corrugated interfaces of CLSSLs
will induce static electric potentials (the electron screening effect) which always tend
to compensate effective potentials due to corrugated interfaces. As the electron density
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Figure 6. The calculated electron densityne (the solid line) and Fermi wave vectorkF (the
chain line) as functions of the Fermi energyEF for the same CLSSL as that in figure 1. The
dashed line indicates the Fermi energy level at which the first subband is filled up with electrons.

increases, the strength of the lateral potential and so also electron subband gaps will decrease
due to the increase of the electron screening effect. In a previous paper, we found that the
effect of (intersubband) plasmons on FIR absorptions of CLSSLs, which causes blue-shifts
of FIR absorption peaks, is negligible for CLSSLs with lateral periodsLx less than 15 nm
[33]. It is expected that the total effect on FIR absorptions caused by the increase of the
electron density is red-shifts of FIR absorption peaks. The detailed study of the electron
screening effect on FIR absorptions of CLSSLs based on self-consistent calculations will
be given elsewhere.

4. Conclusions

We have developed a theoretical method for calculating energy subbands of carriers in
lateral-surface superlattices with corrugated interfaces. Based on the variational principle
and a coordinate transformation, the method overcomes difficulties in constructing wave
functions which must satisfy complicated boundary conditions on corrugated interfaces.
The method is tested numerically via calculations of electron subbands, electron probability
distributions and FIR intersubband absorptions for CLSSLs with periodic variations of well
thicknesses. Sensitive dependences of electron subbands, electron probability distributions
and FIR absorptions on structural parameters of CLSSLs are predicted, and these will find
potential applications in novel device designs in microelectronics and optoelectronics.
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[20] Nötzel R, Ledentsov N N and Ploog K 1992Phys. Rev.B 45 3507
[21] Citrin D S and Chang Y C 1991Phys. Rev.B 43 11 703
[22] Jouanin C and Bertho D 1994Superlatt. Microstruct.16 229
[23] Leng M H and Lent C S 1994Phys. Rev.B 50 10 823
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